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a b s t r a c t 

Genetic, animal and epidemiological studies involving biomolecular and clinical endophenotypes impli- 

cate mitochondrial dysfunction in Alzheimer’s disease (AD) pathogenesis. Polygenic risk scores (PRS) pro- 

vide a novel approach to assess biological pathway-associated disease risk by combining the effects of 

variation at multiple, functionally related genes. We investigated the associations of PRS for genes in- 

volved in 12 mitochondrial pathways (pathway-PRS) with AD in 854 participants from Alzheimer’s Dis- 

ease Neuroimaging Initiative. Pathway-PRS for the nuclear-encoded mitochondrial genome (OR: 1.99 [95% 

Cl: 1.70, 2.35]) and three mitochondrial pathways is significantly associated with increased AD risk: (i) 

response to oxidative stress (OR: 2.01 [95% Cl: 1.71, 2.38]); (ii) mitochondrial transport (OR: 1.81 [95% Cl: 

1.55, 2.13]); (iii) hallmark oxidative phosphorylation (OR: 1.22 [95% Cl: 1.06, 1.40]. Therapeutic approaches 

targeting these pathways may have the potential for modifying AD pathogenesis. Further investigation is 

required to establish a causal role for these pathways in AD pathology. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Alzheimer’s disease (AD) is a debilitating neurological condi-

tion characterized by memory deficits, cognitive and behavioural

impairment ( Huang and Mucke, 2012 ) affecting more than 43.8

million people worldwide ( Nichols et al., 2019 ). The classical neu-

ropathological hallmarks of AD are the accumulation of amyloid-

β peptides into extracellular neuritic plaques and hyperphos-

phorylated tau into intracellular neurofibrillary tangles in iso-
Abbreviations: nMT-DNA, nuclear-encoded mitochondrial genome; nMT-genes, 

nuclear-encoded mitochondrial genes; OXPHOS, Oxidative phosphorylation; 

OXSTRESS, Response to oxidative stress; PRS, Polygenic risk scores; Pathway- 

PRS, Pathway polygenic risk scores. 
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cortical, subcortical and memory-associated regions of the brain

( Thal et al., 2002 ). The substantial attempts to develop drugs

based on the role of amyloid- β and tau in AD pathogenesis have

led to limited success in identifying disease-modifying therapies

( Cummings et al., 2018 ). This lack of success has led to the explo-

ration of other potential causal mechanisms such as mitochondrial

dysfunction. 

Mitochondria are intracellular organelles involved in produc-

ing energy-carrying ATP molecules through oxidative phosphory-

lation (OXPHOS) and other cellular processes, including calcium

homeostasis, response to oxidative stress (OXSTRESS) and apopto-

sis ( Cuperfain et al., 2018 ). Each mitochondrion possesses its own

∼16.5 kb circular genome (mtDNA) encoding 37 genes (2 ribosomal

RNA genes, 22 tRNA genes, and 13 protein-coding genes). There

are a further ∼1,158 genes in the nuclear genome (nDNA) that

also encode proteins involved in mitochondrial function, known as

nuclear-encoded mitochondrial genes (nMT-genes; or collectively

nMT-DNA) ( Calvo et al., 2016 ). 

The mitochondrial cascade hypothesis of AD pathogenesis was

first described in 2004 ( Swerdlow and Khan, 2004a ). Briefly, base-

line mitochondrial function is genetically determined and declines

https://doi.org/10.1016/j.neurobiolaging.2021.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
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with age due to environmental and lifestyle factors ( Swerdlow and

Khan, 2004a ). This declining mitochondrial function is either the

primary event initiating A β- or tau-induced toxicity (primary

mitochondrial cascade) or a by-product of the amyloid cascade

(secondary mitochondrial cascade) that results in AD pathology

( Swerdlow, 2018 ). 

This hypothesis is supported by several lines of evidence.

Early epidemiological studies reported a 3-9 fold higher AD risk

associated with maternal AD history (possibly associated with

maternally-inherited mtDNA) compared with paternal or no AD

family history ( Edland et al., 1996 ). Altered mitochondrial struc-

tures and bioenergetics ( Hirai et al., 2001 ), reduced glucose uti-

lization and functional deficits in several mitochondrial enzymes

have been observed in AD brains ( Swerdlow and Khan, 2004b ). In

transgenic APP mutant mice, upregulated compensatory mitochon-

drial mechanisms precede rather than follow amyloid- β plaque de-

position and behavioural changes ( Reddy et al., 2004 ). Cell culture

studies demonstrate inhibition of mitochondrial COX enzyme activ-

ity ( Gabuzda et al., 1994 ), and increased mitochondrial-generated

reactive oxygen species (ROS) ( Leuner et al., 2012 ) shift A βPP pro-

cessing towards the amyloidogenic pathway. 

Several mitochondrial pathways are dysregulated or dysfunc-

tional in AD. ATP production is reduced due to OXPHOS dys-

function ( Biffi et al., 2014 ), mitochondrial transport is interrupted

( Devi et al., 2006 ; Manczak and Reddy, 2012b ), oxidative stress

is increased ( Wang et al., 2014 ), cellular apoptotic pathways are

upregulated ( Jia et al., 2015 ), intracellular neuronal calcium lev-

els are increased, calcium buffering mechanisms are dysregulated

( Jadiya et al., 2019 ), mitochondrial fission is increased and fu-

sion decreased ( Manczak and Reddy, 2012a ), mitophagy is defec-

tive ( Fang, 2019 ), and mitochondrial membrane potential (mt ��)

is reduced ( Pérez et al., 2018 ). However, the molecular and genetic

mechanisms through which the mitochondria mediate, initiate or

contribute to AD-related pathology remain unknown and highly

debated. 

Individually, most variants in the nuclear-encoded mitochon-

drial genome (nMT-DNA) have sub-threshold ( p > 10 −8 ) effects on

AD risk ( Kunkle et al., 2019a ) in genome-wide association studies

(GWAS). Greater predictive power is obtained by investigating the

combined effect of multiple SNPs as polygenic risk scores (PRS),

which can be weighted by their GWAS effect sizes ( Choi et al.,

2020 ; Escott-Price et al., 2015 ). PRSs can also be composed of ge-

netic variants in multiple genes associated with the same biologi-

cal pathway, forming a pathway-PRS. Taking this approach, we re-

cently demonstrated that PRS composed of sub-threshold variants

in nMT-genes is significantly associated with AD ( Andrews et al.,

2020 ). 

In this study, we use a pathway-based approach, constructing

PRSs for sets of genes that encode components of mitochondrial

pathways, to investigate their association with AD in a biologically

informative way. 

2. Methods 

2.1. Alzheimer’s disease neuroimaging initiative 

This study used data from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) ( Weiner et al., 2017 ), last accessed on 28 April

2019 ( n = 2175). ADNI is a longitudinal study launched in 2004

with the objective of validating amyloid phenotyping, characteriz-

ing AD-associated biomarkers, and understanding the genetic un-

derpinnings of AD to inform clinical trial design. ADNI’s AD diag-

nostic criteria are based on both clinical assessments and neuro-

physiological tests ( Weiner et al., 2017 ). A case-control study de-
sign was employed based on diagnosis at last assessment for each

participant. 

Participants were excluded if they had any of the following: (i)

missing diagnoses ( n = 33), (ii) diagnosis of mild cognitive im-

pairment (MCI) but not AD ( n = 558), (iii) missing APOE genotype

( n = 44) or missing genome-wide sequencing data ( n = 517). Only

participants with self-reported ‘non-Hispanic white’ ancestry were

included in the study to avoid bias due to population stratifica-

tion, resulting in the exclusion of 169 additional samples. The final

study sample included 854 participants (CN = 355, AD = 499). 

2.2. Genotype data 

Genotype data was obtained from the ADNI database ( http:

//adni.loni.usc.edu ). Details of the collection, curation, processing

and quality-control of ADNI data are described in detail else-

where ( Saykin et al., 2015 ; Weiner et al., 2017 ). Briefly, nDNA

was extracted from whole blood and genotyped on Illumina GWAS

arrays for ADNI1 (Illumina Human 610-Quad BeadChip), ADNI

GO/2 participants (Illumina HumanOmniExpress BeadChip), and

ADNI3 participants (Illumina Infinium Global Screening Array v2)

( Weiner et al., 2017 ). APOE genotyping of the two SNPs (rs429358,

rs7412) that distinguish the ε 2, ε 3, and ε 4 alleles was performed

separately for all individuals, and quality controlled ( Saykin et al.,

2015 ). Missing genotype information was imputed on the Michi-

gan Impute server using MiniMac3 and HRC Reference panel (MAF

> 1%, r2 > 0.3). 

Standard GWAS quality control ( Marees et al., 2018 ) of ADNI

genotype data included removing: (i) individuals with SNP miss-

ingness > 5%, (ii) SNPs with sample missingness > 5%, (iii) SNPs

with MAF < 1%; (iv) ambiguous SNPs, (v) duplicate SNPs, (vi) indi-

viduals ±3 SD from the mean sample heterozygosity rate (indica-

tive of sample contamination or inbreeding), (vii) SNPs deviating

from Hardy-Weinberg equilibrium (HWE) p < 10 −6 for cognitively

normal controls and p < 10 −10 for MCI and AD cases (indicative

of possible genotyping errors), (viii) discordance between reported

and genetic sex; (ix) cryptic sample relatedness (pi-hat threshold

0.18752) using KING ( Manichaikul et al., 2010 ); and (x) samples of

non-European ancestry ( ±6 SD from 10 0 0 genomes EUR popula-

tion mean on 10 PCs). 

Principal component analysis (PCA) ( Price et al., 2006 ) was per-

formed using plink version 1.90 beta to obtain eigenvalues and

eigenvectors. A scree plot was generated using eigenvalues and

the elbow method was used to determine that the first 3 princi-

pal components (PCs) explained > 90% of the variance due to ge-

netic ancestry. These first 3 PCs were used as covariates in the re-

gression model to correct for residual population stratification (see

section 2.4 ). 

2.3. Polygenic risk profiling 

We constructed three whole-genome AD PRSs and 12 mito-

chondrial pathway-specific PRSs ( Table 2 ) for each ADNI partici-

pant using the ‘standard weighted allele’ method implemented in

PRSice2 and PRSet ( Choi and O’Reilly, 2019 ) for the whole-genome

and specific mitochondrial pathway gene sets, respectively. 

SNPs were weighted by their GWAS effect sizes from the In-

ternational Genomics of Alzheimer’s Project (IGAP; GWAS Catalog

Study ID: GCST007511) ( Kunkle et al., 2019a ). We retained GWAS

SNPs with a p -value threshold ( P T ) ≤ 0.5 for computing the PRS.

This threshold provided a good model fit for our data (see Ap-

pendix C) and is supported by published evidence as the optimum

threshold for estimating AD PRSs using common variants ( Escott-

Price et al., 2015 ). Linkage disequilibrium (LD) clumping was per-

formed for the whole genome (250 kb window, r2 < 0.1) using

http://adni.loni.usc.edu


D. Paliwal, T.W. McInerney, J. Pa et al. / Neurobiology of Aging 108 (2021) 213–222 215 

Fig. 1. Odds Ratio estimates (95% Confidence intervals) for polygenic risk scores regressed with AD diagnosis. Significance of Competitive p-values reported here, are in- 

terpreted as follows: ∗ p < 0.05 (significant); ∗∗ p < 0.01 (very significant); ∗∗∗ p < 0.001 (highly significant). Red squares denote the inclusion of variants in the APOE 

region, blue triangles denote exclusion of the APOE ± 250 kb region, and the black circle denotes exclusion of the APOE ± 250 kb region and the complete nuclear-encoded 

mitochondrial genome (nMT-DNA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRSice-2 ( Choi and O’Reilly, 2019 ). Set-based LD clumping was per-

formed using PRSet ( Choi and O’Reilly, 2019 ) for pathway-specific

polygenic risk scores to retain SNPs in the gene-set regions only

(250 kb window, r2 < 0.1). 

We omitted loci on sex chromosomes and in the major histo-

compatibility complex (MHC: 28.47 Mb–33.44 Mb, Chr6, GRCh37

( NCBI GRCh37, 2019 )) because estimation of polygenic risk scores

in these regions is difficult due to their genomic complexity, i.e.

mis-mapping of reads due to high sequence homology between X

and Y chromosomes, and high polymorphic diversity in the MHC

region ( Choi et al., 2020 ; Dawkins and Lloyd, 2019 ). As a result, 40

X-linked nMT-genes (Appendix A) and 5 nMT-genes in the MHC

region (Appendix B) were excluded. 

2.3.1. Whole-genome polygenic risk scores 

Whole-genome PRS was estimated in three ways: (i) Whole-

genome, i.e., for all included 

SNPs; (ii) Excluding APOE gene ± 250 kb (19:45409011 –

45412650 on GRCh37), to assess effects that are independent of the

known AD-risk alleles of the APOE and TOMM40 genes ( Yu et al.,

2007 ); and (iii) Excluding the APOE gene ± 250 kb region and

nMT-genes, to provide a baseline for estimating nMT-gene-specific

effects. Polygenic risk score for APOE ± 250 kb region alone was

also calculated including SNPs lying within the APOE gene and 250

kb high LD window on either side. 

2.3.2. Mitochondrial pathway-specific polygenic risk scores 

Mitochondrial pathway-specific PRSs were constructed for (i)

12 mitochondrial pathways represented by genesets obtained from

the Molecular signatures database (MsigDB) ( Liberzon, 2014 ) ( Table

2 ) and (ii) the nMT-DNA geneset (comprising all nMT-genes) ob-

tained from Mitocarta 2.0 ( Calvo et al., 2016 ). Information about

the curation and selection of these pathway genesets is detailed

in Appendix D. These genesets were not limited to nMT-genes and

include all nuclear genes known to influence or to be involved in

mitochondrial function (Appendix E). Only the SNPs in introns and

exons defined by GRCh37 gene boundaries ( NCBI GRCh37, 2019 )

were included for PRS calculation. 

The association of TOMM40 with increased AD risk is con-

founded by its high LD with the APOE ( Roses et al., 2016 ). There-

fore, for the nMT-DNA and mitochondrial transport genesets, 2

PRSs were calculated, one that included TOMM40 and thus the con-

founding effect of APOE , and one that excluded TOMM40 and thus
excluding both the direct effect of TOMM40 and the confounding

effect of APOE . All polygenic risk scores were standardized to z-

scores with respect to the sample mean. A normal PRS distribution

was obtained for all genomic regions and pathways assessed here.

PRS distribution curves and summary statistics are reported in Ap-

pendix J. 

2.3.3. Variance explained by mitochondrial pathway-specific 

polygenic risk scores 

The amount of phenotypic variance explained by the genetic

contribution of each mitochondrial pathway (represented by the

pseudo-r2 metric ( Lee et al., 2012 )) was calculated using PRSet.

Genotypic variance explained by each pathway-PRS was calculated

as the additive sum of genetic variance explained by each SNP

within genes of that pathway. Results are reported in Appendix F. 

2.4. Statistical analysis 

2.4.1. Association testing 

Differences in the demographic characteristics of AD cases and

CN controls were assessed via one-way ANOVA for continuous

variables (age, years of education, Mini Mental State Examination

(MMSE) score) and Fisher’s exact test for categorical variables (gen-

der, APOE genotype). 1-way ANOVA was also performed to assess if

there were significant differences in the mean whole-genome PRS

and nMT-DNA PRS between the 2 diagnostic groups. 

To evaluate the effect of pathway-PRS on AD, a multivariable lo-

gistic regression model was run for AD cases vs. CN controls. Age,

sex, years of education, APOE ε4 copy number (0, 1, 2), ADNI co-

hort (1/2/GO/3), and the first three principal components were in-

cluded as covariates. 

A replication study was performed in a small independent ADNI

cohort ( n = 375, CN = 229, AD = 146). These samples were ob-

tained from ADNI1 ( n = 10), ADNI2 ( n = 198) and ADNI3 ( n = 167)

and have no overlap with the original target sample. Demograph-

ics of this cohort and results from the pathway-PRS analysis are

reported in Appendix H. 

A fixed-effects meta-analysis of the results from association

testing of target cohort ( Table 3 , Fig. 1 ) and replication co-

hort (Appendix H) was performed using the R package ‘metafor’

( Viechtbauer, 2010 ). These results are reported in Appendix I. 

The association between pathway-PRS and four AD endopheno-

types was also investigated in a larger cohort ( n = 1065, CN = 235,
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Table 1 

Demographics of ADNI participants ( n = 854) included in this study 

Diagnosis SMD c p -value c 

CN AD 

Number of individuals (N) 355 499 

Age (M (SD) years) b 79.45 (6.82) 78.41 (7.63) 0.143 p < 0.05 

Male (%) a 192 (22.4) 295 (34.5) 0.102 p > 0.05 

Education (M (SD) years) b 16.39 (2.60) 15.51 (2.89) 0.321 p < 0.001 

APOE genotype (N (%)) a p < 0.001 

ε2 + 47 (5.5) 26 (3.0) 0.284 

ε 3/ ε 3 219 (25.6) 161 (18.8) 0.708 

ε4 + 91 (10.6) 325 (38.0) 0.898 

MMSE (M (SD)) b 28.93 (1.38) 19.77 (6.09) 2.074 p < 0.001 

Whole-genome PRS (M (SD)) b -0.47 (1.02) 0.34 (0.84) 0.864 p < 0.001 

nMT-DNA PRS (M (SD)) b -0.35 (0.94) 0.25 (0.97) 0.626 p < 0.001 

APOE, Apolipoprotein E; CN, Cognitively Normal; AD, Alzheimer’s Disease; PRS, Polygenic 

Risk Score; nMT-DNA, nuclear-encoded mitochondrial DNA. 
a Number of individuals (N) and percentage of cohort (%) have been reported for gender and 

APOE genotypes. 
b Mean (M) ± standard deviation (SD) have been reported for age, education, MMSE (mini- 

mental state examination score), whole-genome PRS, and nMT-DNA PRS. 
c One-way ANOVA was performed for continuous variables (age, years of education, MMSE 

score, whole-genome PRS, and nMT-DNA PRS) and Fisher’s exact test for categorical variables 

(gender, APOE genotypes). SMD (standardized mean difference) and p-values have been re- 

ported. 
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AD = 463, MCI = 367). 2 cerebrospinal (CSF) biomarkers - amyloid

beta ( n = 619) and tau levels ( n = 718), and 2 global cognition

scores – ADAS Cog-score ( n = 1062) and mPACCdigit ( n = 1065)

were examined. Samples sizes for each endophenotype analysis re-

duced due to missing data. A multivariable linear regression model

was run with age, sex, years of education, APOE ε4 copy number

(0, 1, 2), ADNI cohort (1/2/GO/3), and first three principal compo-

nents included as covariates. Demographic statistics and results are

reported in Appendix K. 

All statistical analyses were performed in R 3.4.4. 

2.4.2. Multiple testing burden correction 

p -value significance was calculated after correcting for multiple

testing burden using two methods (a) False Discovery Rate (FDR

< 0.05) using the Benjamini-Hochberg procedure ( Benjamini and

Hochberg, 1995 ) embedded within p.adjust() R function, and (b)

competitive empirical p -value approach using PRSice and PRSet

( Choi and O’Reilly, 2019 ) to compare the outcome of adjusted p-

value significance for each pathway using both methods. 

A competitive p -value ( Competitive – p ) was obtained for each

pathway-PRS as: 

ompet it i v e − P = 

∑ N 
n =1 I ( P null < P observ ed ) + 1 

N + 1 

where Pobserved is the probability of the observed difference be-

tween cases and controls for each pathway-PRS, Pnull is obtained

for SNPs randomly selected from the background exome in num-

bers (N) equivalent to those in the pathway-PRSs. 

PRSet randomly generates hypothetical ‘control’ pathway gene

sets with a similar number of SNPs as the target pathway, then

randomly shuffles samples’ phenotype (case/control diagnosis) and

runs the regression model to obtain a null p -value. This is re-

peated over 10 0 0 0 permutations to generate a Pnull distribution

curve, against which the observed p-value of association for that

pathway is compared, to determine the p -value significance. This

approach ensures that a higher p -value significance is not sim-

ply a consequence of greater number of SNPs in a pathway, since

the p -value of the target pathway is assessed against a null p -

value distribution generated from hypothetical pathways with the

same number of SNPs chosen randomly from the background

genome. Pathways yielding both significant FDR-adjusted and com-
petitive p -values were deemed as overall significant, while those

with inconsistent p -value significance were regarded as tentative

results. 

3. Results 

3.1. Research cohort 

Descriptive statistics for ADNI participants ( n = 854; CN = 355,

AD = 499) are presented in ( Table 1 ). There are significant dif-

ferences between the CN and AD groups for years of education,

APOE genotype, and MMSE score. The mean whole-genome PRS

and complete nMT-DNA PRS are also significantly different be-

tween groups, with AD cases having a higher mean PRS than CN

controls. 

3.2. Polygenic scores of the whole nuclear genome and AD risk 

The whole-genome PRS is significantly associated with AD, with

a 1 SD increase in the PRS associated with AD (OR: 7.40 [95%

Cl: 5.60, 9.97]). These results remain highly significant even af-

ter (i) exclusion of APOE region ±250kb (OR: 6.37 [95% Cl: 4.81,

8.62]) and (ii) exclusion of both APOE region ±250kb and nMT-

genes (OR: 6.29 [95% Cl: 4.75, 8.49]) (Fig.1). The OR decreases

when these gene regions are excluded, but the confidence intervals

largely overlap (Fig.1). These ORs are substantially greater than the

OR for APOE ±250kb region alone (OR: 1.96 [95% Cl: 1.66, 2.33). 

3.3. Polygenic scores of nMT-DNA and mitochondrial pathways and 

AD risk 

The nMT-DNA PRS is significantly associated with AD (OR: 1.99

[95% Cl: 1.70, 2.35]). In the pathway analyses, 3 mitochondrial

pathways are significantly associated with AD: (i) OXSTRESS (OR:

2.01 [95% Cl: 1.71, 2.38]); (ii) mitochondrial transport (OR: 1.81

[95% Cl: 1.55, 2.13]); and (iii) hallmark oxidative phosphorylation

(OR: 1.22 [95% Cl: 1.06, 1.40]; Fig.1). For the mt �� regulation

pathway (OR: 1.18 [95% Cl: 1.02, 1.36]), the FDR-adjusted p-value

is nominally significant ( p FDR < 0.05), however the competitive p-

value is not significant ( p competitive > 0.05). 
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Table 2 

Genomic regions and pathway genesets for which polygenic risk scores were calculated 

Polygenic Risk Score Total genes a nMT-genes a SNPs b 

Whole nuclear genome 18463 1158 515164 

Whole nuclear genome (excluding APOE ± 250 kb) 18298 1156 515058 

Whole nuclear genome (excluding APOE ±250kb and nMT-DNA b ) 17142 0 83066 

nMT-DNA c 1158 1158 13992 

Response to Oxidative Stress 352 60 5803 

Hallmark Oxidative Phosphorylation 245 211 2399 

Mitochondrial Transport 179 107 2394 

Apoptotic mitochondrial changes 58 25 922 

Mitochondrial membrane potential regulation 54 21 1124 

Mitonuclear crosstalk 38 0 1061 

Mitochondrial fission and regulation 24 13 652 

Fatty acid beta-oxidation 21 14 211 

Calcium homeostasis and transport 19 7 402 

Mitochondrial fusion 19 11 262 

Mitophagy and regulation 171 24 3401 

APOE, Apolipoprotein E. 
a Total number of nuclear genes and nuclear-encoded mitochondrial genes (nMT-genes) in each geneset have been 

reported. 
b Total number of SNPs included for polygenic risk score calculation for each pathway are reported. 
c nMT-DNA comprises of the complete geneset of nuclear-encoded mitochondrial genome. 

Table 3 

Significant associations of polygenic risk scores for different genomic regions or pathways with Alzheimer’s Disease 

Genomic region/ pathway Including APOE region Excluding APOE ( ±250 kb window) 

Beta a SE b FDR-adjusted 

p -value b 
Competitive 

p -value 

Beta a SE b FDR-adjusted 

p -value c 
Competitive 

p-value c 

Whole-genome 13.69 0.14 9.27 ×10 −34 1.00 ×10 −4 12.44 0.14 9.94 ×10 −34 1.00 ×10 −4 

APOE + /- 250 kb region c 8.05 0.08 2.33 ×10 −15 1.00 ×10 −4 N/A N/A N/A N/A 

nMT-DNA d 8.37 0.08 3.89 ×10 −9 1.00 ×10 −4 5.91 0.08 1.65 ×10 −8 1.00 ×10 −4 

Response to oxidative stress d 8.32 0.08 3.71 ×10 −6 1.00 ×10 −4 4.75 0.08 7.51 ×10 −6 1.00 ×10 −4 

Mitochondrial transport d 7.40 0.08 6.01 ×10 −3 1.00 ×10 −4 3.13 0.07 4.62 ×10 −3 1.56 ×10 −1 

Hallmark oxidative phosphorylation 2.77 0.07 1.18 ×10 −2 2.15 ×10 −2 - - - - 

Mitochondrial membrane potential regulation 2.28 0.07 4.24 ×10 −1 2.42 ×10 −2 - - - - 

Mitophagy and regulation 1.64 0.07 1.72 ×10 −1 1.99 ×10 −2 - - - - 

Regulation of cytochrome C release from 

mitochondria 

1.20 0.07 3.33 ×10 −1 5.42 ×10 −2 - - - - 

Mitochondrial fission and regulation 1.20 0.07 3.33 ×10 −1 5.59 ×10 −1 - - - - 

Apoptotic mitochondrial changes 0.95 0.07 4.02 ×10 −1 8.96 ×10 −1 - - - - 

Mitochondrial fusion 0.98 0.07 4.02 ×10 −1 9.99 ×10 −1 - - - - 

Fatty acid beta-oxidation 0.99 0.07 4.02 ×10 −1 9.95 ×10 −1 - - - - 

Calcium homeostasis and transport -0.47 0.07 6.66 ×10 −1 9.99 ×10 −1 - - - - 

Mitonuclear crosstalk -0.76 0.07 4.97 ×10 −1 9.97 ×10 −1 - - - - 

APOE, Apolipoprotein E. nMT-DNA represents the complete nuclear-encoded mitochondrial geneset. 
a Beta denotes beta estimates from multivariate regression between pathway-PRS and diagnosis. 
b Standard errors (SE), FDR-adjusted p-value, and competitive p-value of association are reported. 
c APOE + /- 250 kb region includes APOE gene and 250 kb window on either side. 
d Apart from the whole-genome, only 3 pathway genesets (nMT-DNA, Response to oxidative stress, and Mitochondrial transport) included genes lying within the APOE + /- 250 kb 

region, therefore only these pathways were tested for association with AD after excluding the APOE + /- 250 kb region, to reduce multiple testing burden. Hence, p-values are NA for 

all other pathway genesets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The associations of nMT-DNA PRS (OR: 1.63 [95% Cl: 1.39,

1.93]) and OXSTRESS (OR: 1.48 [95% Cl: 1.26, 1.75]) pathways re-

mains significant even after exclusion of the APOE ±250kb region

(Table.3). For the Mitochondrial transport pathway-PRS (OR: 1.23

[95% Cl: 1.03, 1.48]), the FDR-adjusted p -value remains significant

( p FDR < 0.01), but the competitive p -value becomes non-significant

( p competitive > 0.05) on APOE ±250kb exclusion. Omission of the

APOE ±250kb region was not necessary for the other pathways be-

cause they do not contain genes within this region. 

The results from the replication study (reported in Appendix

H) showed that the nMT-DNA PRS is significantly associated with

AD (OR: 1.65 [95% Cl: 1.30, 2.13]). In the pathway analyses, 2

mitochondrial pathways are significantly associated with AD: (i)

OXSTRESS (OR: 1.62 [95% Cl: 1.28, 2.06]) and (ii) mitochondrial

transport (OR: 2.02 [95% Cl: 1.58, 2.64]; Appendix H). Whole-
genome PRS is significantly associated with AD, with a 1 SD in-

crease in the PRS associated with higher AD risk (OR: 5.41 [95% Cl:

4.93, 6.14]), and remains highly significant even after the exclusion

of APOE ±250kb region (OR: 4.84 [95% Cl: 4.36, 5.57]). 

The results from fixed-effects meta-analysis of both target and

replication studies (reported in Appendix I) showed that the nMT-

DNA PRS is significantly associated with AD (OR: 1.88 [95% Cl: 1.64,

2.15]). In the pathway analyses, four mitochondrial pathways are

significantly associated with AD: (i) OXSTRESS (OR: 1.87 [95% Cl:

1.63, 2.14]), (ii) mitochondrial transport (OR: 1.87 [95% Cl: 1.63,

2.14]), (iii) hallmark oxidative phosphorylation (OR: 1.19 [95% Cl:

1.05, 1.34]), and (iv) mitochondrial membrane potential regulation

(OR: 1.15 [95% Cl: 1.02, 1.30]). Even after the exclusion of APOE

±250kb region, nMT-DNA (OR: 1.51 [95% Cl: 1.31, 1.73]), OXSTRESS

(OR: 1.36 [95% Cl: 1.19, 1.56]), and mitochondrial transport path-
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way (OR: 1.24 [95% Cl: 1.09, 1.42]) remain significant. Furthermore,

the whole-genome PRS is significantly associated with AD, with

a 1 SD increase in the PRS associated with higher AD risk (OR:

6.61 [95% Cl: 5.26, 8.30]), and remains highly significant even af-

ter the exclusion of APOE ±250kb region (OR: 5.76 [95% Cl: 4.57,

7.25]). 

We found statistically significant associations between some

pathway-PRS and AD endophenotypes. These results are reported

and briefly described in Appendix K. 

The highest amount of AD phenotypic variance in the model

was explained by collective genetic variation of the whole-genome

( ∼30%) followed by the OXSTRESS pathway ( ∼8%). The variance

explained by nMT-DNA, mitochondrial transport, and OXPHOS

pathway-PRS was 7%, 5%, and 1.5% respectively (see Appendix F).

Although the variance explained by each mitochondrial pathway is

small, it highlights the contribution of their genetic variation to the

AD phenotype. 

4. Discussion 

In this study, we investigated the association of AD poly-

genic risk scores composed of genetic variants located within

genes associated with known mitochondrial pathways with AD

risk. We found that pathway-PRS composed of the complete

nuclear-encoded mitochondrial genome and genes involved in

(i) response to oxidative stress, (ii) mitochondrial transport, and

(iii) hallmark oxidative phosphorylation were associated with in-

creased AD risk. The results obtained by the pathway-based ap-

proach used here suggest that SNPs in nMT-genes and other nu-

clear genes involved in mitochondrial pathways significantly con-

tribute to AD risk, suggesting therapeutic potential in targeting

them. 

Previous multi-omics studies support the role of mitochondrial

pathways in AD. For instance, ( Mostafavi et al. (2018) built molecu-

lar networks using modules of co-expressed genes associated with

AD and its endophenotypes. They found three modules enriched

for gene ontology categories related to mitochondria showing a

positive correlation with histopathological β-amyloid burden, cog-

nitive decline, and clinical diagnosis of AD ( Mostafavi et al., 2018 ).

Similarly, ( Johnson et al. (2020) conducted a co-expression network

analysis of AD brains and found that protein co-expression families

involved in mitochondrial metabolism strongly correlated with AD,

and showed the strongest differences by case status ( Johnson et al.,

2020 ). 

Two studies performed proteomic profiling of AD brain tis-

sues and cerebrospinal biomarkers and found modules of co-

expressed proteins strongly linked to mitochondrial metabolism

( Higginbotham et al., 2020 ; Muraoka et al., 2020 ). In parallel,

( Ryu et al., 2021 ) demonstrated that neural cell cultures differ-

entiated from LOAD patient-derived pluripotent stem cells show

multiple mitochondrial bioenergetic alterations, such as lower mi-

tochondrial mass, reduced glucose uptake, low NAD levels, and

overcompensation by OXPHOS upregulation ( Ryu et al., 2021 ). Col-

lectively, these studies suggest that higher baseline genetic sus-

ceptibility conferred by mitochondrial pathway-associated poly-

genic risk results in lifelong altered and inefficient mitochondrial

bioenergetics. Through progressive homeostatic imbalances, envi-

ronmental influences with aging and accumulation of mutations,

this may exacerbate mitochondrial dysfunction, thereby predispos-

ing higher AD risk. 

Our results add to accumulating evidence from genetic, clini-

cal, model cell and animal studies supporting the involvement of

these mitochondrial pathways and nMT-genes in AD. We found

that a 1 SD increase in the OXPHOS pathway-PRS is associated

with 1.22 times increased likelihood of developing AD. The impor-
tance of OXPHOS pathway in generating ATP-energy to support the

high cellular energy demand in the brain and the body is well-

established ( Cuperfain et al., 2018 ). Reduced ATP production due

to mitochondrial OXPHOS dysfunction activates a cascade of events

leading to neural cell death observed in AD-associated neurode-

generation ( Biffi et al., 2014 ). Importantly, dysregulation of gene

networks and gene regulation can also facilitate OXPHOS dysfunc-

tion, as demonstrated for PTCD1 using knock-out and cell-culture

models ( Fleck et al., 2019 ; Pa et al., 2019 ). 

We found that a 1 SD increase in the mitochondrial transport

pathway-PRS is associated with 1.81 times increased likelihood

of developing AD. Disruption of mitochondrial transport can lead

to defective communication with the nucleus and other cytosolic

components. Current evidence indicates that defective mitochon-

drial transport in AD is primarily due to A β- and tau-interactions

blocking mitochondrial channels such as TOMM40 ( Devi et al.,

2006 ), TIM23 ( Devi et al., 2006 ), TOMM22 ( Hu et al., 2018 ), and

VDAC1 ( Manczak and Reddy, 2012b ). Hence, mitochondrial trans-

port dysfunction may be a secondary effect of A β and tau toxic-

ity. The contribution of TOMM40- specific effects to mitochondrial

transport pathway-PRS is difficult to delineate due to confounding

from its high LD with APOE ( Roses et al., 2016 ). 

We found that a 1SD increase in the OXSTRESS pathway-PRS

is associated with 2.01 times increased likelihood of developing

AD. The OXSTRESS pathway, which, when upregulated, activates

the eIF2 α/ATF4 axis increasing expression of stress response genes

( Michel et al., 2015 ), is strongly associated with AD pathology

and causes calcium dyshomeostasis, loss of mt �� , high mutation

rates, interrupted gene transcription and regulation due to high

ROS-mediated cellular damage ( Wang et al., 2014 ). The OXSTRESS

geneset contains the APOE gene. Increasing evidence suggests that

the APOE genotype influences mitochondrial stress-related pro-

cesses in an APOE isoform-specific manner ( Dose et al., 2016 ).

Therefore, SNPs from the APOE gene would have contributed to the

higher pathway-PRS and AD association. 

Finally, we found that a 1 SD increase in the mt �� regulation

pathway-PRS is associated with 1.18 times increased likelihood of

developing AD. However, while this of mt �� was significant after

FDR correction, it non-significant after applying permutation test-

ing, therefore the results for this pathway are interpreted with cau-

tion. 

In the replication analysis of a small independent ADNI cohort,

we obtained significant results for the whole-genome (with and

without exclusion of APOE + /-250 kb), nMT-DNA, OXSTRESS, and

mitochondrial transport, thus validating these results. Due to the

small sample size ( n = 375, CN = 229, AD = 146), we had in-

sufficient power to detect a significant association for mitochon-

drial membrane potential regulation pathway, and nMT-DNA and

mitochondrial transport after APOE + /-250 kb exclusion. The fixed-

effects meta-analysis of target and replication studies showed sim-

ilar results as the target study (reported in Appendix I). 

Moderate to high heritability of late-onset AD (LOAD) is indi-

cated by SNP ( ∼53%) ( Ridge et al., 2016 ) and twin studies ( ∼60%

–80%) ( Gatz et al., 2006 ). APOE is the strongest known genetic

predictor of LOAD risk, explaining up to 13% of the phenotypic

variance ( Ridge et al., 2016 ). GWAS have identified multiple GWS

non-APOE loci which explain up to 33% of AD phenotypic variance

( Ridge et al., 2016 ) and have been implicated in multiple pathways

( Karch and Goate, 2015 ). This could explain our result that the OR

estimates for AD risk slightly decrease yet remain significant after

the exclusion of APOE region ( ±250 kb window) from the whole-

genome PRS (Fig.1). The exclusion of APOE ±250kb and nMT-DNA

from whole-genome PRS was an attempt to estimate baseline nMT-

gene-specific effects. It results in a slightly smaller yet significant

OR with large overlapping intervals with whole-genome PRS. We
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found that beta estimates are not significantly different between

‘whole-genome PRS excluding APOE ±250kb’ and ‘whole-genome

excluding APOE ±250kb and nMT-DNA’. Possibly because the nMT-

DNA explains a much smaller proportion of phenotypic variance

compared to the high genome-wide contribution even after APOE

exclusion. 

Our result for the OR estimate of APOE + /- 250kb region PRS is

slightly smaller yet comparable to those reported in a recent sys-

tematic review of APOE ORs ranging between 2.07 (95% Cl: 1.67

–2.56) - 4.87 (95% Cl: 4.22 –5.63) ( Stocker et al., 2018 ). ADNI’s

smaller sample size and differing cohort characteristics may have

contributed to a slightly smaller OR. Additionally, previous studies

only calculated OR for the APOE ε4 allele, while we calculated a

PRS for APOE gene region, which will include protective SNPs with

negative effect sizes that contributed to a lower OR compared to

the APOE ε4 allele alone. 

The nMT-DNA, mitochondrial transport, and OXSTRESS genesets

contain genes located in the APOE ±250 kb region ( Kunkle et al.,

2019b ). Interestingly, the OR estimates for nMT-DNA and OXSTRESS

pathways are similar to the estimate for the APOE ±250kb re-

gion. Yet, the association of nMT-DNA and OXSTRESS pathway-PRS

with AD remains significant even after the exclusion of the APOE

±250 kb region. Thus, re-emphasising the contribution of non-

APOE genes in conferring substantial polygenic risk of these path-

way genesets. However, the competitive p -value for mitochondrial

transport is not significant after the exclusion of APOE ±250 kb re-

gion, which includes the TOMM40 gene. This result may reflect the

known high risk of APOE/TOMM40 loci ( Roses et al., 2016 ). Because

of high LD, the contributions of these two loci to PRS cannot be

separated. Exclusion of the region may, therefore, result from ei-

ther removal of a real effect of TOMM40 variation or removal of a

confounding effect of APOE variation. 

These results should be interpreted in conjunction with some

study limitations. First, the ADNI cohort is relatively small, and

our results require replication in a larger independent cohort. Sec-

ond, only participants of European ancestry were included, there-

fore these results may not be generalizable to other ancestrally

diverse populations. Third, our analysis was conducted using the

ADNI clinical diagnostic criteria for AD which did not include

biomarker assessment. This can result in heterogeneity in clinical

diagnosis due to concomitant or alternative neuropathology’s that

can lead to clinical phenotypes that are analogous to AD. Future

studies should consider the reassessment of AD diagnoses by in-

tegrating biomarkers data. Finally, our pathway-PRS may underes-

timate of true genetic risk conferred by mitochondrial pathways.

We could not include mtDNA SNPs previously implicated with AD

risk ( Hahn and Zuryn, 2019 ) since large-scale AD GWAS for mtDNA

variants are currently unavailable. 

The primary strength of this study is the pathway-driven,

biologically informed approach to polygenic risk scoring. The

pathway-PRS OR estimates presented in this paper are compara-

ble to those previously reported for high-risk single GWS variants

( Kunkle et al., 2019b ). This is because pathway-PRS effectively cap-

ture the cumulative small effects of sub-threshold variants within

genes involved in mitochondrial pathways. This results in a larger

combined effect size and hence higher statistical power to detect

association with AD than association testing of GWS variants indi-

vidually. 

Future research may benefit by (a) performing out-of-sample

validations and replication in larger datasets to challenge over-

fit prediction models and to validate the findings of this study;

(b) investigating the association between the pathway-PRS and

AD endophenotypes or within the A/T/N research framework

( Dubois et al., 2021 ); (c) incorporating functional annotation of in-

tronic and exonic gene regions or AD-associated intergenic eQTLs
to calculate PRS; and (d) assessing the clinical utility of pathway-

PRS for patient risk stratification to guide prevention and early

treatment. 

5. Conclusion 

In conclusion, this study demonstrated that the genetic varia-

tion within the OXPHOS, mitochondrial transport, and OXSTRESS

pathways captured by pathway-PRS significantly influences AD

risk. These findings contribute to the growing evidence of a mi-

tochondrial role in AD and suggest these pathways as potential

targets in ameliorating AD pathogenesis. However, it remains to

be determined if mitochondrial dysfunction is the primary cause

of AD pathogenesis. Further investigations are required to validate

and establish the causal role of nMT-genes and pathways in AD

pathology. 
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